A formula for human retinal ganglion cell receptive field density as a function of visual field location.

نویسنده

  • Andrew B Watson
چکیده

In the human eye, all visual information must traverse the retinal ganglion cells. The most numerous subclass, the midget retinal ganglion cells, are believed to underlie spatial pattern vision. Thus the density of their receptive fields imposes a fundamental limit on the spatial resolution of human vision. This density varies across the retina, declining rapidly with distance from the fovea. Modeling spatial vision of extended or peripheral targets thus requires a quantitative description of midget cell density throughout the visual field. Through an analysis of published data on human retinal topography of cones and ganglion cells, as well as analysis of prior formulas, we have developed a new formula for midget retinal ganglion cell density as a function of position in the monocular or binocular visual field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field

An experimental study of lateral displacement of ganglion cells (GCs) from foveal cones in six human retinas is reported. At 406-675 microm in length, as measured in radially oriented cross-sections, Henle fibers are substantially longer than previously reported. However, a new theoretical model indicates that the discrepancies in these reports are mainly due to meridional differences. The mode...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types

The distributions of neurons in sensory circuits display ordered spatial patterns arranged to enhance or encode specific regions or features of the external environment. Indeed, visual space is not sampled uniformly across the vertebrate retina. Retinal ganglion cell (RGC) density increases and dendritic arbor size decreases toward retinal locations with higher sampling frequency, such as the f...

متن کامل

Receptive Field Microstructure and Dendritic Geometry of Retinal Ganglion Cells

We studied the fine spatial structure of the receptive fields of retinal ganglion cells and its relationship to the dendritic geometry of these cells. Cells from which recordings had been made were microinjected with Lucifer yellow, so that responses generated at precise locations within the receptive field center could be directly compared with that cell's dendritic structure. While many cells...

متن کامل

Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina

At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2014